Quantum and Classical Tradeoffs1
نویسنده
چکیده
We initiate the study of quantifying the quantumness of a quantum circuit by the number of gates that do not preserve the computational basis, as a means to understand the nature of quantum algorithmic speedups. Intuitively, a reduction in the quantumness requires an increase in the amount of classical computation, thus giving a “quantum and classical tradeoff”. In this paper we present two results on this measure of quantumness. The first gives almost matching upper and lower bounds on the question: “what is the minimum number of non-basis-preserving gates required to generate a good approximation to a given state”. This question is the quantum analogy of the following classical question, “how many fair coins are needed to generate a given probability distribution”, which was studied and resolved by Knuth and Yao in 1976 [Algorithms and Complexity: New Directions and Recent Results, pages 357–428, Academic Press, 1976]. Our second result shows that any quantum algorithm that solves Grover’s Problem of size n using k queries and ` levels of non-basis-preserving gates must have k · ` = Ω(n).
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملمروری بر شبکه های عصبی کوانتومی
In this paper the development of quantum neural networks (QNN), and some of presented models and physical implementation are reviewed. How of making use of double-slit experiment for implementing QNN and methods of designing as well as examples of two-layer hybrid networks in QNN constructed from quantum neurons and classical neurons are represented. Some application models of the networks (QNN...
متن کاملاثر برهمکنشهای چهار اسپینی برروی سیمای فاز مدل هایزنبرگ J1-J2 پادفرومغناطیس اسپین 3/2 شبکه لانه زنبوری
In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order,...
متن کاملفرمولبندی هندسی کوانتش تغییرشکل برزین
In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005